学好立几并不难,空间想象是关键。点线面体是一家,共筑立几百花园。 点在线面用属于,线在面内用包含。四个公理是基础,推证演算巧周旋。 空间之中两条线,平行相交和异面。线线平行同方向,等角定理进空间。 判定线和面平行,面中找条平行线。已知线与面平行,过线作面找交线。 要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。 已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。 判定线和面垂直,线垂面中两交线。两线垂直同一面,相互平行共伸展。 两面垂直同一线,一面平行另一面。要让面与面垂直,面过另面一垂线。 面面垂直成直角,线面垂直记心间。 一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。 空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。 引进向量新工具,计算证明开新篇。空间建系求坐标,向量运算更简便。 知识创新无止境,学问思辨勇攀登。 多面体和旋转体,上述内容的延续。扮演载体新角色,位置关系全在里。 算面积来求体积,基本公式是依据。规则形体用公式,非规形体靠化归。 展开分割好办法,化难为易新天地。